鸭脖官网 - 鸭脖官方网站 0676-45778443

高中数学:19种答题方法+6种解题思想

作者:鸭脖官方网站 时间:2021-10-07 00:59
本文摘要:解数学题,除了掌握有关的数学知识之外,最好掌握一定的解题技巧甚至知道点解题思想。要知道高考试题的解答历程中蕴含着重要的数学思想方法,如果能有意识地在解题历程中加以运用,势必会取得很好的效用。 只惋惜限于篇幅,该篇只是一个或许,以后有时机再推文详细先容种种方法。No.119种数学答题方法1.函数函数题目,先直接思考后建设三者的联系。 首先思量界说域,其次使用“三合一定理”。

鸭脖娱乐

解数学题,除了掌握有关的数学知识之外,最好掌握一定的解题技巧甚至知道点解题思想。要知道高考试题的解答历程中蕴含着重要的数学思想方法,如果能有意识地在解题历程中加以运用,势必会取得很好的效用。

只惋惜限于篇幅,该篇只是一个或许,以后有时机再推文详细先容种种方法。No.119种数学答题方法1.函数函数题目,先直接思考后建设三者的联系。

首先思量界说域,其次使用“三合一定理”。2.方程或不等式如果在方程或是不等式中泛起逾越式,优先选择数形联合的思想方法;3.初等函数面临含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的稳定的性质。如所过的定点,二次函数的对称轴……4.选择与填空中的不等式选择与填空中泛起不等式的题目,优选特殊值法;5.参数的取值规模求参数的取值规模,应该建设关于参数的等式或是不等式,用函数的界说域或是值域或是解不等式完成,在对式子变形的历程中,优先选择分散参数的方法;6.恒建立问题恒建立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的界说完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先思量是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不切合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建设关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先思量化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的规模;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、料想之后证明;料想的偏向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的盘算注意系数1/3,而三角形面积的盘算注意系数1/2 ;与球有关的题目也不得不防,注意毗连“心心距”缔造直角三角形解题;13.导数导数的题目通例的一般不难,但要注意解题的条理与步骤,如果要用结构函数证明不等式,可从已知或是前问中找到突破口,须要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,固然要注意步骤的几多决议解答的详略;如果有漫衍列,则概率和为1是磨练正确与否的重要途径;15.换元法遇到庞大的式子可以用换元法,使用换元法必须注意新元的取值规模,有勾股定理型的已知,可使用三角换元来完成;16.二项漫衍注意概率漫衍中的二项漫衍,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否认写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候思量斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用界说;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。No.26种解题思想1.函数与方程思想函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的看法去分析和研究数学中的数量关系,建设函数关系或结构函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或使用方程的性质去分析解决问题。2.数形联合思想数与形在一定的条件下可以转化。

如某些代数问题、三角问题往往有几何配景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形联合的思想对问题的解决有举足轻重的作用。解题类型①“由形化数”:就是借助所给的图形,仔细视察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。②“由数化形” :就是凭据题设条件正确绘制相应的图形,使图形能充实反映出它们相应的数量关系,提示出数与式的本质特征。

鸭脖娱乐

③“数形转换” :就是凭据“数”与“形”既对立,又统一的特征,视察图形的形状,分析数与式的结构,引起遐想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。3.分类讨论思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比力广,原因三是因为它可造就学生的分析息争决问题的能力。原因四是实际问题中经常需要分类讨论种种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型类型1:由数学观点引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等观点的分类讨论;类型2:由数学运算引起的讨论,如不等式双方同乘一个正数还是负数的问题;类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口偏向的影响,一次项系数对极点坐标的影响,常数项对截距的影响等。分类讨论思想是对数学工具举行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面思量问题。分类的原则:分类不重不漏。

鸭脖官方网站

4.转化与化归思想转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的焦点。数形联合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的详细出现。转化包罗等价转化和非等价转化,等价转化要求在转化的历程中前因和结果是充实的也是须要的;不等价转化就只有一种情况,因此结论要注意磨练、调整和增补。

转化的原则是将不熟悉和难明的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为详细的和直观的问题;将庞大的转为简朴的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。常见的转化方法①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较庞大的函数、方程、不等式问题转化为易于解决的基本问题;③数形联合法:研究原问题中数量关系(剖析式)与空间形式(图形)关系,通过相互变换获得转化途径;④等价转化法:把原问题转化为一个易于解决的等价命题,到达化归的目的;⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;⑥结构法:“结构”一个合适的数学模型,把问题变为易于解决的问题;⑦坐标法:以坐标系为工具,用盘算方法解决几何问题也是转化方法的一个重要途径。5.特殊与一般思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上建立时,在其特殊情况下也一定建立,凭据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解计谋,也同样有用。

6.极限思想极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构想一个与它有关的变量;二、确认这变量通过无限历程的效果就是所求的未知量;三、结构函数(数列)并使用极限盘算规则得出效果或使用图形的极限位置直接盘算效果。掌握数学解题思想是解答数学题时不行缺少的一步,建议同学们在做题型训练之前先相识数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在考试中游刃有余。

泉源:本文综合泉源于网络,如有侵权请联系删除!。


本文关键词:高中,数学,鸭脖官方网站,19种,答题,方法,种,解题,思想,解

本文来源:鸭脖娱乐-www.zggdzht.com